
Instructor Himanshu Singh

Date 29-Apr-2022

Version 1.0

Aim of this document:•

•

What are object(s) in PowerShell and in general?

Objects are computer language representation of world

concepts and any real world entities to work inside computers

using computers programs / applications / PowerShell scripts

that are written / coded by us / computer programmer /

software developer / script developer / system administrator.

○

Examples of an valid PowerShell Object:

Any generic concept and details of a real world entity

'person' or 'collection of persons', are represented as an

objects in PowerShell.

▪

Concept and details of a real world entity like a 'car' or

'collection of cars', are represented as an objects in

PowerShell.

▪

In more realistic scenario with respect to PowerShell

primary use in System Administration automation tasks,

concept and details of all running computer programs /

applications like (notepad = notepad.exe, Paint =

mspaint.exe and PowerShell 7 itself = pwsh.exe etc.)

running in our computers are technically w.r.t. computer

science theory and computer programming are also

represented as same concept of objects in PowerShell.

▪

○

•

PowerShell Objects Demystified!
Friday, April 29, 2022 2:08 PM

 MindMajix Page 1

represented as same concept of objects in PowerShell.

□

□

Understanding objects in PowerShell step by step:

Concept and details of real world entity Person or

collection of persons, represented as an objects in

PowerShell.

□

▪

PowerShell objects lab setup:

Download and run Object1.ps1 program to create

PowerShell objects lab environment. Open the downloaded

file in Visual Studio Code or PowerShell ISE code

editor , run this program file once (press F5) and then

close it because objects that are created by program

will be still present inside computer memory (RAM) to

experiment with them. It should be noted that after

running the program objects will only remain in

□
▪

○

 MindMajix Page 2

running the program objects will only remain in

computer memory (RAM) until code editor is running and

not closed.

□

□

□

Using PowerShell Objects - case scenario #1: Using objects

that are stored inside their individual single object

variable.

▪

 MindMajix Page 3

variable.

□

Using PowerShell Objects - case scenario #2: Using a group

of single individual person objects that are stored inside

one big group representing object variable ($Persons).

This group level object ($Persons) is bigger in size in

computer memory and can accommodate more smaller single

individual object ($Person1, $Person2,…,$Person5) inside

it.

□

▪

Using PowerShell Objects - case scenario #3: If, we have a

group level object named $Persons and we know that it

accommodates all of my individual person representing

objects, then can we access our individual objects by

taking help of our bigger group level object i.e.

$Persons. This case scenario #3 is another approach of

accomplishing same goal that is accomplished in case

scenario #1 but by defining dedicated variables for each

individual single person representing object.

▪

 MindMajix Page 4

individual single person representing object.

□

Application of PowerShell objects:

In earlier section, we learned what are objects in

PowerShell. We, are also able to create a simple yet

powerful (able to cover all case scenarios of using

objects) lab environment to work with PowerShell objects.

▪

While setting up the objects lab by running PowerShell

computer program named 'Object.ps1' actually, we have made

us capable to capture and realize the concept and details

of the real world entity - Person or collection of persons

as PowerShell objects.

▪

This object.ps1 program has created few individual person

representing objects for us to work with. Each individual

person representing object is represented by and present

inside its associated dedicated variable viz. $Person1,

$Person2, $Person3, $Person4 $Persons5.

▪

There is also one more group level bigger size object

variable with name $Persons that capability to accommodate

all smaller individual objects inside it and allow

PowerShell user to access individual person representing

objects that it is storing with help of group level

variable $Persons instead of using dedicated variables

($Person1, $Person2,…,$Person5) to refer individual object

in a group / collection. Well and good till this point.

▪

Now, as we have objects to work with (rather I better say

play with!) lets apply that knowledge to work with

PowerShell objects using various computer programming

concepts / methods / techniques available in PowerShell

computer language and accomplish some goal or solution to

a problem / requirement in hand.

▪

For getting the grasp of core concepts related to

PowerShell objects and for simplicity reasons we have

created in earlier discuss PowerShell object lab

individual known persons and their group as PowerShell

objects.

▪

It is should be noted here that, all PowerShell computer

programming techniques are applicable on sample PowerShell

objects created and mentioned above as they are applicable

any type of PowerShell objects we will encounter in real

case scenarios. For e.g. all PowerShell objects created as

part of firing 'Get-Process' cmdlet. In context of Get-

Process cmdlet, we have our presently running computer

programs / applications / processes represented as

PowerShell objects.

▪

Objects application #1: Finding count of total number of

individual single objects ($Person1, $Person2,…, $Person5)

present inside bigger group level object ($Person.

▪

○

 MindMajix Page 5

present inside bigger group level object ($Person.

Command: $Persons.Count□

□

Objects application #2: Find all available properties of

each individual person object.

What are object properties?

In real world, every object has some particular

characteristics associated to it the makes that

object uniquely identified in the world. For e.g.

person can have characteristic like SSN (Social

Security Number), first name and last name as its

characteristics. We can identify or refer a person

in the world among other present objects uniquely

using them. For e.g. if some person have associated

characteristics as SSN = 1546, first name =

'Stella' and last name = 'Martin', then using these

characteristics we can uniquely refer to this

particular person in the real world.



Like real world object, PowerShell objects also

have associated characteristics associated to it.

For e.g. in our previously discussed PowerShell

object lab, we have single individual object

$Person3 which refers to person 'Stella Martin'.

This object has three characteristics associated

with it viz. SSN, FirstName and LastName. Each

object characteristic has a value associated with

it like person 'Stella Martin' has characteristic

SSN with associated value 3, has characteristic

FirstName with associated value 'Stella' and has

characteristic 'LastName' with associated value

'Martin'. In PowerShell we call object

characteristics as its properties. Each property

has associated value to it.



□

Let's say we have real person 'Stella Martin'

represented as an object (SPerson1) using PowerShell

computer language in a PowerShell computer program /

PowerShell script. To make this person uniquely

identifiable / locate / refer / distinguish in a group

($Persons) of other similar individual object present

in that group we have associated / attached few

properties / characteristics with associated values to

each individual object. If we have access to these

properties and their associated values then seeing the

details of these properties in form of that value we as

human as well as computer programs are able to identify

and work of individual object per se. Without

properties and their associated values; it would have

been hard to human as well machine / computer programs

to distinguish objects created by computer languages

like PowerShell. So, now as we know our person in

concern ('Stella Martin') may have some properties and

their associated values lets access / find / retrieve

those value with help of object that represents 'Stella

Martin' in PowerShell computer language (i.e. $Person3

or using group level object we can also access 'Stella

Martin' single individual person object representation

as Persons[2]). So, to access all properties of 'Stella

Martin' single individual object do following:

□

▪

 MindMajix Page 6





Objects application #3: Let’s keep on focus on our

particular individual object 'Stella Martin'. Now we know

to print all the properties of object, let’s print only

selected interested properties of object

□

▪

Objects application #4: Let’s keep on focus on our

particular individual object 'Stella Martin'. Now we know

that we have access to particular interested person object

'Stella Martin', we also want to enquire details about

this particular individual object but, we don't want to

see all the properties of the object, rather we only want

to see few interested properties of the interested

individual object 'Stella Martin'. Problem is we don't the

exact names of the properties of this object to specify

using previously learned command. There is a command to

accomplish this goal:

▪

 MindMajix Page 7

□

Now we know all properties name, we can specify

interested property name to show interested property

with its associated value for our focus and PowerShell

selected object as discussed in previous command.

□

Objects application #5: Let’s widen our focus. Suppose, we

have bigger group level object variable (like $Persons)

which accumulates inside it and also representing a

collection or group smaller individual object representing

single individual person (in our case $Person1,

$Person2,…,$Person5). Now, the we have situation. We, want

to display each individual single object (i.e. $Person1,

$Person2,…,$Person5)present inside group level object

($persons) but not based on their properties /

characteristics names also not all the objects present

inside the group ($Persons have in our case 5 total

individual single Person representing objects), but only

few of those individual single objects that have 'values

of the particular interested property of the individual

single Person object' matching our 'Object Filtering'

criterion. This technique / method in PowerShell is called

'Filtering of objects'. We have Cmdlet in PowerShell to do

just that work in very efficient fashion - Where-Object

cmdlet. Few examples given below to showcase various

category of requirements in which Where-Obj cmdlet can be

applied to filter desired single individual objects from a

group level bigger object variable like in our case

($Person)

Where-Object example #1: From group of Persons

represented by bigger group level object ($Persons), I

want only those individual single object whose

interested property say 'LastName' value starting with

character 'm' that is also in case-insensitive fashion

i.e. 'martin' or Martin' as LastName (= Surname)

property value will be considered valid as per

criterion of using Where-Object for filtering

individual single object.

□

Theory of Where-Object cmdlet because it is very useful

for applications with PowerShell objects.

Where-Object in general: The Where-Object command

is used to filter objects based on any of their

properties. Where-Object follows a consistent

pattern that looks like:



Where-Object {$_.PropertyName -ComparisonType

FilterValue}



The PropertyName is the name of the object's

property that you are filtering.



ComparisonType or Comparison operators is a short

keyword for what type of comparison you are doing.

Some examples are "eq" for equals, "gt" for greater

than, "lt" for less than, and "like" for a wildcard

search. Finally, the FilterValue is the value you



□

▪

 MindMajix Page 8

search. Finally, the FilterValue is the value you

are comparing the object's property against.

Note: By default, string comparisons are

case-insensitive. The equality operators have

explicit case-sensitive and case-insensitive

forms. To make a comparison operator case-

sensitive, add a c after the -. For

example, -ceq is the case-sensitive version

of -eq. To make the case-insensitivity

explicit, add an i after -. For example, -ieq

is the explicitly case-insensitive version

of -eq. When the input of an operator is a

scalar value, the operator returns a Boolean

value. When the input is a collection /

simple a bigger group level variable like in

case $Persons containing many smaller

individual single objects inside it as group

level object variable, the operator returns

only those filtered elements of the

collection that match the right-hand value of

the expression. If there are no matches in

the collection, comparison operators return

an empty array.



◊

◊

Where-Object example #2: From group of Persons

represented by bigger group level object ($Persons), I

want only those individual single object whose

interested property say 'SSN' value (a numeric value)

is greater than 3 or equal to 3. We will be using

equality Comparison operators as greater than equal to

here in this case which is written as 'ge'.

□

 MindMajix Page 9



Where-Object example #3: From group of Persons

represented by bigger group level object ($Persons), I

want only one individual single object by specifying a

very precise and strict criterion that is my single

individual object interested property say 'FirstName'

should be exactly equal to property value of 'Dan'. If

give this criterion then single individual object

representation of person 'Dan Scott' will filtered out

from group of Persons represented by bigger group level

object ($Persons). We also want to write the final

filtered object representing person 'Dan Scott' in some

text file for logging purpose, data analysis purpose

and for future reference using PowerShell pipeline

concept adding third command as 'Out-File' cmdlet.



□

Objects application #6: Let’s still keep widen our focus.

Suppose, we have bigger group level object variable (like

$Persons) which accumulates inside it smaller individual

objects which are representing single individual objects

of type person ($Person1, $Person2,…,$Person5). Now, let's

consider a situation. We, want to display each individual

single object (i.e. $Person1, $Person2,…,$Person5) present

inside group level object ($persons) but this time, based

on individual single objects that are representing a

person properties / characteristics name or individual

single objects other higher level details like what is the

position particular individual single object while being

present inside a bigger group level object variable

($Persons). It should be noted that both Select-Object

cmdlet and Where-Object cmdlets filter-objects but the

degree of level of details of each individual single

object (i.e. $Person1, $Person2,…,$Person5) that these two

different cmdlets take care differ. Select-Object confines

its selection and search criterion for the each individual

▪

 MindMajix Page 10

its selection and search criterion for the each individual

single object till the level of each single individual

object's property name and its position within bigger

group level object variable ($Persons) while Where-Object

goes little more deep while defining its selection and its

search criterion for the each individual single object

present inside within bigger group level object variable

($Persons) to the level of matching what are the details

of each single individual object based on the values of

properties of each single individual object. Both cmdlets

have use in different case scenarios and PowerShell

requirements. Apart from filtering each single individual

objects within bigger group level object variable

($Persons) Select-Object is also used to reduce / put a

limit on amount of details shown / displayed / exposed /

revealed / retrieved in form of all available properties

and their associated values for each individual single

object.

Select-Object example #1: From group of Persons

represented by bigger group level object ($Persons), I

want only those individual single object whose

position in its containing bigger group level object

($Persons) should be less than or equal to 2 in other

words we want those single individual object(s) that

are among first 2 within their accumulating bigger

group level object ($Persons).



□

Select-Object example #2: From group of Persons

represented by bigger group level object ($Persons), I

want only those individual single object whose

position in its containing bigger group level object

($Persons) should be among last 2 within their

accumulating bigger group level object ($Persons).

□

 MindMajix Page 11



Select-Object example #3: As discussed earlier, we can

also use Select-Object to limit details shown about

each selected / retrieved / displayed single individual

object. For examples we want limited details of all

single individual objects in form its only single

property named 'SSN' and its associated value. As

discussed earlier, we have group of Persons which are

represented by bigger group level object ($Persons)

which actually accumulates individual single object

(i.e. $Person1, $Person2,…,$Person5) inside it.



□

Select-Object example #4: As discussed earlier, we can

also use Select-Object to limit details shown about

each selected / retrieved / displayed about each single

individual object (i.e. $Person1, $Person2,…,$Person5)

accessed from the group level object ($Persons). For

examples we want limited details of all single

individual objects in form its all those properties

whose names we are not fully clear but we know that our

interested set of properties for each single individual

object (i.e. $Person1, $Person2,…,$Person5) accumulated

/ present inside bigger group level object ($Persons)

have 'Name' word present in last of our interested

Property Name (for e.g. FirstName, LastName as our

interested property names). So, in this case scenario

in place of exact property name we can specify

approximate value of property name using wildcards

(using *).

□

 MindMajix Page 12



Select-Object example #5: This is variation of Select-

Object example #4. In this example also we want limited

details of all single individual objects in form its

all those properties whose names we are not fully clear

but we know that our interested set of properties for

each single individual object (i.e. $Person1,

$Person2,…,$Person5) accumulated / present inside

bigger group level object ($Persons) does not have

'Name' in last of Property Name. So, in other words, we

want to exclude all those properties that match our

criterion but want show all remaining properties left

after exclusion specified / defined along with all

selected properties associated values. So, in this case

scenario in place of exact property name which we are

interested in excluding them, we can specify

approximate value of property name using wildcards.

Also, to exclude all those property names that match

our criterion in the final output, we use Select-Object

switch parameter -ExcludeProperty.



□

Topic: Sorting object

Topic details: Descending, Property = SSN, Property

Values of individual object are used, Ascending is

default, we do not need to specify, Descending need to

specify, Results persons are ordered in reverse order



□
▪

Topic: Counting Objects using new cmdlet Measure-object in ▪

 MindMajix Page 13

Topic: Counting Objects using new cmdlet Measure-object in

Pipeline while are using Select-Object or Where-Object

also

Topic details: Find how many individual single objects

(i.e. $Person1, $Person2,…,$Person5) are there in count

which have the property with name 'LastName' and with

its property value that starts with character 'm'

ends with then anything (i.e. * in wildcards usage

terms).





□

▪

Topic: Using Select-Object cmdlet with -Last parameter, in

pipeline, for filtering and sorting using Sort-Object,

real world scenario.

Topic details: Select 5 most largest amount of computer

memory (RAM) using processes currently running inside

computer.

Get-Process | Sort-Object -Property WS | Select-

Object -Last 5



□

▪

Topic: Select-Object with use of -Unique parameter, used

in pipeline, for filtering object

□

▪

Topic: Select-Object use with -Index parameter, used in

pipeline, for filtering object

□

▪

Topic: Reading lines from text file (in particular, IP

addresses written in a text file with one IP address per

line), with use of pipeline, give all read lines as

▪

 MindMajix Page 14

line), with use of pipeline, give all read lines as

collection of read lines objects to next command in

pipeline i.e. Select-Object, then using Select-Object

with -Skip parameter and finally using Test-Connection

cmdlet to work on lines / line objects / in particular IP

addresses filtered out by the pipeline used commands.

□

Topic: Enumerating objects (moving to each object

explicitly without use of pipeline), using ForEach-Object

cmdlet, simple example.

□

▪

Topic: Enumerating objects, using ForEach-Object cmdlet

while using pipeline, here using ForEach-Object we are

moving to each process object collection got from previous

command executed / run in the pipeline and for each object

doing some processing when we have reach particular object

during the overall movement. The Processing done is

written inside {} and details of processing are: write

this in this format for each object 'ID = Process Name =

Company has developed me.'





▪

Topic: Enumerating objects, using ForEach-Object cmdlet,

in pipeline, this time doing some computation when we are

moving through each object using ForEach-Object cmdlet and

doing some computation / processing when are at particular

▪

 MindMajix Page 15

doing some computation / processing when are at particular

object during overall movement. In this example $Files

variable contains files inside C:\Users\Lenovo folder.

□

© 2021 Himanshu Singh.

 MindMajix Page 16

